confusion matrix of the final result
step 1: add the resulting land cover map and reference data
var image = ee.Image("users/servirmekong/Vietnam/landCoverMap");
var referenceData = ee.FeatureCollection("users/servirmekong/Vietnam/ReferenceDataForestTraining");
step 2: Take the 20% of data you didnt use for training the model
var referenceData = referenceData.randomColumn("random");
var sample = referenceData.filter(ee.Filter.gt("random",0.8));
Map.addLayer(sample)
step 3: Sample the land cover map
var validation = image.sampleRegions(sample,["land_class"],10);
step 4: calculate the error matrix
var confMatrix = validation.errorMatrix("land_class","Mode");
var OA = confMatrix.accuracy();
var CA = confMatrix.consumersAccuracy();
var Kappa = confMatrix.kappa();
var Order = confMatrix.order();
var PA = confMatrix.producersAccuracy();
print(confMatrix,'Confusion Matrix');
print(OA,'Overall Accuracy');
print(CA,'Consumers Accuracy');
print(Kappa,'Kappa');
print(Order,'Order');
print(PA,'Producers Accuracy');
step 5: Add the image to the map (optional)
Map.addLayer(image,{min:0,max:4,palette:"blue,purple,darkred,yellow,darkgreen"},"land cover map");<span id="mce_SELREST_start" style="overflow:hidden;line-height:0"></span>