using a random forest classifier
var referenceData = ee.FeatureCollection("users/servirmekong/cambodia/paddyRice") // import feature collection var table = ee.FeatureCollection("users/servirmekong/countries/KHM_adm1"); // import surface reflectance composite var composites = ee.ImageCollection("projects/servir-mekong/yearlyComposites"); // filter for province var province = "Batdâmbâng"; // select province from feature collection var myProvince = table.filter(ee.Filter.eq("NAME_1","Batdâmbâng")); // filter image for date var image = ee.Image(composites.filterDate("2018-01-01","2018-12-31").first()); // add image to map Map.addLayer(image.clip(myProvince),{min:0,max:3000,bands:"red,green,blue"},"2018"); var trainingSample = image.sampleRegions(referenceData,["land_class"],30); var bandNames = image.bandNames(); var classifier = ee.Classifier.randomForest(100,0).setOutputMode('PROBABILITY').train(trainingSample,"land_class",bandNames); var classification = image.classify(classifier).multiply(100) Map.addLayer(classification.clip(myProvince),{min:20,max:80,palette:"white,gray,black"},"primitive")
SVM: Tile error: An internal server error has occurred (d254d6e537e375eb01e580f9db99f327).